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 A B S T R A C T

Machine learning (ML)-based downlink channel estimation for reconfigurable intelligent surface (RIS)-assisted 
communication faces challenges such as handling channel variations, high communication overhead of 
centralized learning (CL), and vulnerability to malicious users. We propose a novel approach integrating 
blockchain to enhance security by verifying registered users, autoencoder (AE)-based clustering to identify 
regions within the cell, and clustered federated learning (CFL) to ensure good channel estimation performance 
while minimizing communication and energy overhead. Simulations show that the proposed clustering-based 
scheme achieves estimation performance comparable to CL while significantly reducing communication and 
energy overhead.
1. Introduction

Reconfigurable intelligent surfaces (RIS) are among the key enablers 
of the advancements shaping the next-generation wireless systems
[1–3]. RIS consists of multiple small, low-cost, passive reflective ele-
ments, each intelligently controlled to impose independent phase shifts 
on incident signals [4–7]. When strategically deployed, RIS mitigates 
line-of-sight challenges, particularly in terahertz (THz) and millimeter-
wave (mmWave) communications [8,9]. However, realizing the full 
potential of RIS-enabled communication systems requires accurate 
downlink channel state information (CSI) [10], which poses a signifi-
cant challenge due to the complexity of separately estimating channels 
from the base station (BS) to RIS and from RIS to the users. The 
complexity arises from the passive nature of RIS elements, requiring 
the estimation of the cascaded channel: while traditional techniques 
like least squares (LS) or minimum mean squared error (MMSE) can 
be used for cascaded channel estimation, the pilot overhead increases 
substantially in presence of RIS [11].

Machine learning (ML) techniques have effectively addressed chan-
nel estimation challenges: deep residual learning (DReL) was exploited 
to recover channel coefficients by learning residual noise [12]; CNN-
based methods were considered to map low-dimensional cascaded 
channels to high-dimensional ones using a subset of RIS elements [13]; 
denoising NN-based cascaded channel estimation techniques were in-
troduced in [14]. Although ML-based methods outperform traditional 

I This work was supported in part by the Research Council of Norway through the Project ML4ITS within the IKTPLUSS Framework.
∗ Corresponding author.
E-mail address: asaad.cheema@ntnu.no (M.A. Cheema).

techniques, they rely on centralized frameworks requiring data transfer 
to a central server leading to high communication overhead and data 
integrity concerns [15]. Communication overhead can be reduced via 
federated learning (FL) where only model parameters (and not users 
data) are shared [16].

Despite the potential benefits, conventional FL-based approaches 
face challenges related to a single model not performing effectively 
across the whole cell due to variations in channel characteristics as 
users move between regions. Cell partitioning based on prior knowl-
edge was explored in [11], but apparently limited by prior identifica-
tion of the regions and does not include security mechanisms against 
malicious users. In our previous work, clustering was exploited for 
effective user selection, but the approach remained focused on building 
a single model [17].

This paper proposes a framework for downlink channel estimation 
in RIS-enabled communication systems based on clustered federated 
learning (CFL). More specifically, the proposed algorithm includes: 
(i) an autoencoder (AE)-based unsupervised region identification algo-
rithm to group users based on the underlying characteristics of their 
received pilot signals, eliminating the need for prior knowledge; (ii) a 
simplified model-parameter selection which does not require an explicit 
classifier training to identify user transitions between regions; and (iii) 
a blockchain-based authentication mechanism that enhances security 
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Fig. 1. Wireless communication through RIS assistance.
by ensuring only trustworthy users already connected to the BS partic-
ipate in CFL training. Simulation results demonstrate the effectiveness 
of the unsupervised CFL in reducing communication and computational 
overhead without compromising system accuracy. Additionally, we 
investigate the impact of single-user poisoning within a cluster.

Notation.  Uppercase (resp. lowercase) bold letters denote matrices 
(resp. column vectors). (⋅)𝑇 , ⊗, and ‖ ⋅‖2 denote the transpose operator, 
the Kronecker product, and the Euclidean norm, respectively. diag(𝐚)
denotes a diagonal matrix with 𝐚 on the main diagonal. The gradient of 
a function is denoted by ∇𝑓 (⋅). Calligraphic letters denote sets (except 
 denoting the loss function). || is the cardinality of .

2. System model

2.1. Channel model

We consider a single-cell, narrowband, RIS-aided, wireless commu-
nication system, where the BS communicates with 𝐾 single-antenna 
users using an 𝑀-antenna uniform planar array (UPA). A RIS with 𝑁
reflecting elements is positioned between the BS and the users to im-
prove communications and the BS controls the RIS through a dedicated 
wireless link [9,18,19]. The cell is segmented into 𝑅 regions, see Fig.  1, 
each accommodating a specific number of users (𝑈𝑟 such that 

𝑅
∑

𝑟=1
𝑈𝑟 =

𝐾). Each region exhibits different specific channel properties tailored 
to its users and represents a different channel scenario influenced by 
factors such as the distance between the users and the BS, the angles of 
arrival/departure of the channels, etc. The transition from one region 
to another may cause significant changes in the channel characteristics 
experienced by the user [11].

We consider the frequency division duplex (FDD) mode for the 
RIS-aided system, similar to [20,21], where the downlink and uplink 
channels exhibit non-reciprocity.1 Note that we focus solely on ob-
taining the CSI for the reflecting link. Meanwhile, the direct channels 
between the BS and the users can be estimated by turning off all 
RIS elements,2 similar to conventional massive MIMO systems [11]. 

1 Even in the time division duplex (TDD) mode, the uplink and downlink 
channels may not be reciprocal in certain hardware implementations of RIS, 
as explicitly stated in [22]. Accurate downlink channel estimation is required 
to achieve effective beamforming for both the BS and the RIS [23].

2 A practical method for turning off the RIS is proposed in [24,25].
2 
Neglecting the effect of the direct channel and assuming that the BS 
communicates with the users via the RIS reflecting link, the downlink 
signal (𝑦𝑟,𝑢) received at the 𝑢th user in the 𝑟th region is 

𝑦𝑟,𝑢 = 𝐟𝑇𝑟,𝑢Φ𝐆𝐰𝑟,𝑢𝑥𝑟,𝑢 + 𝑛𝑟,𝑢 , 𝑟 = 1,… , 𝑅 , 𝑢 = 1,… , 𝑈𝑟 , (1)

where 𝐆 ∈ C𝑁×𝑀  represents the channel between the BS and the 
RIS, 𝐟𝑟,𝑢 ∈ C𝑁×1 denotes the channel between the RIS and the 𝑢th 
user in the 𝑟th region, and 𝑛𝑟,𝑢 ∈ C represents the additive white 
Gaussian noise. Further, 𝐰𝑟,𝑢 ∈ C𝑀×1 and 𝑥𝑟,𝑢 ∈ C denote the precoding 
vector at the BS and the transmitted signal by the BS, respectively. The 
reflecting matrix at the RIS, denoted by Φ ∈ C𝑁×𝑁 , is diagonal, with 
Φ = diag(𝜙1, 𝜙2,… , 𝜙𝑁 ), where 𝜙𝑛 is the reflection coefficient of the 
𝑛th element of the RIS. Using the Saleh-Valenzuela model, the channel 
𝐆 can be expressed as 

𝐆 =
√

𝑀𝑁
𝐿𝐺

𝐿𝐺
∑

𝑙1=1
𝛼𝐺𝑙1𝐚

(

𝜗𝐺r
𝑙1
, 𝜓𝐺r

𝑙1

)

𝐛
(

𝜗𝐺t
𝑙1
, 𝜓𝐺t

𝑙1

)𝑇
, (2)

where 𝛼𝐺𝑙1  signifies the complex gain, 𝜗
𝐺r
𝑙1
(𝜓𝐺r

𝑙1
) and 𝜗𝐺t

𝑙1
(𝜓𝐺t

𝑙1
) denote the 

azimuth (elevation) angles at the RIS and the BS for the 𝑙1th path, 
respectively, and 𝐿𝐺 is the number of paths between the RIS and the BS. 
Further, 𝐆 remains nearly constant once the RIS is installed. Likewise, 
the channel 𝐟𝑟,𝑢 ∈ C𝑁×1 can be given as 

𝐟𝑟,𝑢 =
√

𝑁
𝐿𝑟,𝑢

𝐿𝑟,𝑢
∑

𝑙2=1
𝛼𝑟,𝑢𝑙2 𝐚

(

𝜗𝑟,𝑢𝑙2 , 𝜓
𝑟,𝑢
𝑙2

)

, (3)

where 𝐿𝑟,𝑢 is the number of paths between the 𝑢th user in the 𝑟th region 
and the RIS. The variables 𝛼𝑟,𝑢𝑙2 , 𝜗

𝑟,𝑢
𝑙2
, and 𝜓𝑟,𝑢𝑙2  denote the complex gain, 

the azimuth angle, and the elevation angle associated with the 𝑙2 path 
of the RIS, respectively. Further, 𝐛(𝜗, 𝜓) ∈ C𝑀×1 and 𝐚(𝜗, 𝜓) ∈ C𝑁×1

correspond to the normalized steering vectors linked with the BS and 
the RIS, respectively. For a standard 𝑁1 ×𝑁2 UPA, the expression for 
𝐚(𝜗, 𝜓) can be given as [26] 

𝐚(𝜗, 𝜓) = 1
√

𝑁

[

𝑒−𝑗𝜂cos(𝜓)𝐧1
]

⊗
[

𝑒−𝑗𝜂 sin(𝜓)cos(𝜗)𝐧2
]

, (4)

where 𝜂 = 2𝜋𝑑∕𝜆, 𝑁 = 𝑁1𝑁2, 𝐧1 = [0, 1,… , 𝑁1 − 1]𝑇  and 𝐧2 =
[0, 1,… , 𝑁2 − 1]𝑇 , 𝜆 denotes the carrier wavelength and the antenna 
spacing 𝑑 is typically chosen as 𝑑 = 𝜆∕2. Defining 𝝓 = [𝜙1, 𝜙2,… , 𝜙𝑁 ]𝑇
∈ C𝑁×1, the system model in (1) can be remodeled as
𝑦𝑟,𝑢 =𝝓𝑇 diag(𝐟𝑇𝑟,𝑢)𝐆𝐰𝑟,𝑢𝑥𝑟,𝑢 + 𝑛𝑟,𝑢,

=𝝓𝑇𝐇 𝐰 𝑥 + 𝑛 , (5)
𝑟,𝑢 𝑟,𝑢 𝑟,𝑢 𝑟,𝑢
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Fig. 2. Proposed framework for cascaded downlink channel estimation.
where the downlink cascaded channel 𝐇𝑟,𝑢 ∈ C𝑁×𝑀  for the 𝑢th user in 
the 𝑟th region is defined as 𝐇𝑟,𝑢 = diag(𝐟𝑇𝑟,𝑢)𝐆. Due to the inability of 
the RIS to process the signals independently, the cascaded channel 𝐇𝑟,𝑢
is typically estimated rather than distinct channels 𝐆 and 𝐟𝑟,𝑢.

For the downlink cascaded channel estimation, the BS transmits 
known pilot signals to the users through the RIS over 𝑄 time slots. 
Using (5), the pilot signal received at the 𝑢th user in the 𝑟th region 
during the 𝑞th time slot, denoted by 𝑦𝑝𝑟,𝑢,𝑞 ∈ C, can be expressed as 

𝑦𝑝𝑟,𝑢,𝑞 = 𝝓𝑇𝑞 𝐇𝑟,𝑢𝐰𝑟,𝑢𝑝𝑟,𝑢,𝑞 + 𝑛𝑟,𝑢,𝑞 , (6)

where 𝑞 = 1, 2,… , 𝑄. Further, 𝑝𝑟,𝑢,𝑞 , 𝝓𝑞 and 𝑛𝑟,𝑢,𝑞 ∼  (0, 𝜎2𝑛 ) denote 
the pilot signal transmitted by the BS, the reflection vector at the RIS 
and the noise at the user associated with the 𝑞th time slot, respectively. 
Considering 𝑄 time slots, the received pilot vector 𝐲𝑝𝑟,𝑢 at the 𝑢th user 
can be given as 

𝐲𝑝𝑟,𝑢 = 𝜣𝐇𝑟,𝑢𝐰𝑟,𝑢 + 𝐧𝑟,𝑢, (7)

where 𝐲𝑝𝑟,𝑢 = [𝑦𝑝𝑟,𝑢,1, 𝑦
𝑝
𝑟,𝑢,2,… , 𝑦𝑝𝑟,𝑢,𝑄]

𝑇 ∈ C𝑄×1, the pilot signal is chosen as 
𝑝𝑟,𝑢,𝑞 = 1, 𝜣𝑇 = [𝝓1,𝝓2,… ,𝝓𝑄] ∈ C𝑁×𝑄 and 𝐧𝑟,𝑢 = [𝑛𝑟,𝑢,1, 𝑛𝑟,𝑢,2,… , 𝑛𝑟,𝑢,𝑄]𝑇

∈ C𝑄×1. Using the identity vec(𝐀𝐁𝐂) = (𝐂𝐓 ⊗ 𝐀)vec(𝐁), the above 
3 
system model can be modified as
𝐲𝑝𝑟,𝑢 = (𝐰𝑟,𝑢𝑇 ⊗𝜣)vec(𝐇𝑟,𝑢) + 𝐧𝑟,𝑢,

= 𝜳 𝑟,𝑢𝐡𝑟,𝑢 + 𝐧𝑟,𝑢, (8)

where 𝜳 𝑟,𝑢 = (𝐰𝑟,𝑢𝑇 ⊗ 𝜣) ∈ C𝑄×𝑀𝑁  and 𝐡𝑟,𝑢 = vec(𝐇𝑟,𝑢) ∈ C𝑀𝑁×1. It 
is assumed that 𝜣 and 𝐰𝑟,𝑢 remain fixed and are known to both the BS 
and the user. The primary goal is to estimate 𝐡𝑟,𝑢 using 𝐲𝑝𝑟,𝑢 and 𝜳 𝑟,𝑢.

3. Proposed algorithm

The proposed framework consists of two main blocks (see Fig. 
2). The upper block includes authentication, training, classification, 
and CFL-based channel estimation models. The lower block leverages 
these models to categorize input pilot signals into specific regions, 
and subsequently employs the designated region models for channel 
estimation, akin to the testing phase.

3.1. Blockchain-based authentication

Authentication is implemented to establish a secure environment 
and ensure the participation of trustworthy users only. In traditional 
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FL-based schemes for CSI estimation, the users are typically authen-
ticated to confirm their registration and connectivity with the BS. 
However, this process could allow adversaries to connect to the BS 
and poison the model parameters merely by participating in the net-
work. To address this vulnerability, a blockchain-based authentication 
mechanism has been implemented on top of the traditional system 
for CFL training, thus trustworthy users participate in the training, 
while other users receive the final trained model for channel estimation 
purposes. Blockchain technology is selected due to four crucial benefits: 
(i) data integrity through cryptographic features, (ii) user privacy, (iii) 
distributed structure robust to single point of failure, and (iv) public 
records for fair and transparent auditing [27–29].

A smart contract on the Ethereum platform handles user authenti-
cation and registration performing two main functions: (i) registering 
trustworthy users based on the hash of their identity, and (ii) au-
thenticating users before they participate in CFL model training. Each 
trustworthy user is assigned a unique identifier for registration, such 
as an international mobile subscriber identifier (IMSI), coupled with a 
secret phrase, both managed by a designated authority.3 The authority 
is the only entity authorized to update the list of registered users. 
When a user connects to the BS, the BS hashes the IMSI along with 
the secret phrase to confirm the user’s registration. Since this is a one-
time process, sharing the secret imposes minimal to no overhead. Once 
registration is confirmed, the user can participate in the CFL-based 
training. Furthermore, the blockchain is managed by the BS, which has 
sufficient computational resources to handle them efficiently.

3.2. Unsupervised clustering and classification

Each authenticated user trains a lightweight AE using its received 
signals for a limited number of epochs. It is crucial to note that at 
this stage, the BS and the users operate without prior knowledge of 
the regions. Each user subsequently shares its encoder/decoder model 
parameters and 5% of its received pilot signals with the BS. The BS 
tests data from each user against all AE parameters and generates a loss 
matrix where each row serves as user embedding, capturing the loss 
values corresponding to user’s data when processed by all other users’ 
AEs. The embeddings are then clustered using 𝐾-means algorithm, 
where the optimal number of clusters is determined using the elbow 
method.4 This regional information is then utilized to train tailored 
region-specific models.

The BS selects one user per cluster5 and assumes the AE parameters 
of the selected user as representative for the corresponding region. 
The set of selected AE parameters (one per region) allows for effective 
assignment of channel-estimation models to mobile users, who can 
potentially transit from one region into a different region, and to new 
users joining the system. The effective assignment relies on classifica-
tion based on the minimum reconstruction loss of the reference AE 
parameters operating on signals from the user of interest. It is worth 
noticing that the classifier is built on the classes identified by the 
clustering algorithm and thus requires no prior information. The overall 
methodology of this clustering process is detailed in Algorithm 1.

3 It refers to the administrative entity within the mobile subscriber company 
or the organization responsible for the framework’s design. Furthermore, user 
trust for registration can be determined by analyzing network traffic and user 
behavior [30–32].

4 Ideally, the number of clusters equals the number of regions (𝑅).
5 The impact of the user selection strategy (e.g. random selection, optimized 

strategy) falls beyond the scope of this work.
4 
Algorithm 1 AE-based Clustering and Classification
1: procedure Train-AE
2:  for 𝑘th user, 𝑘 = 1,… , 𝐾, do
3:  Initialize 𝜷, 𝜸
4:  min𝜸,𝜷

(

1
𝑠
∑𝑠
𝑖=1 ‖𝐱𝑘,𝑖 − 𝐱̂𝑘,𝑖‖22

)

5:  𝐴𝐸𝑘 =
[

𝜷, 𝜸
]

6:  Share 𝐴𝐸𝑘 and AE
𝑘  with the BS

7:  end for
8: end procedure
9: procedure Loss Matrix (LM)
10:  Initialize 𝐿𝑀 with zeros
11:  for each 𝐴𝐸𝑖, 𝑖 = 1,… , 𝐾, do
12:  for each AE

𝑗 , 𝑗 = 1,… , 𝐾, do

13:  𝐿𝑀𝑖,𝑗 = (𝐗, 𝐗̂),  where
{

𝐗 ∈ AE
𝑗 ,

𝐗̂ = 𝐴𝐸𝑖(𝐗)
14:
15:  end for
16:  end for
17: end procedure
18: procedure Clustering
19:   = EM(𝐿𝑀) ⊳ 𝐸𝑀 represents the Elbow Method.
20:  𝐶𝑙𝑡𝑠 = KM(𝐿𝑀,) ⊳ 𝐶𝑙𝑡𝑠 = {𝐶1, 𝐶2,… , 𝐶} is the set of 

clusters, and 𝐾𝑀 represents the K-means algorithm.
21: end procedure
22: procedure Classification
23:  𝐴𝐸Classify = {𝑓 (𝐶1), 𝑓 (𝐶2), ..., 𝑓 (𝐶)} ⊳ 𝐴𝐸Classify represents the 

AE-based classification of the received signals, and 𝑓 (𝐶𝑖) selects an 
AE from cluster 𝐶𝑖.

24:  𝐿𝑜𝑠𝑠 = [ ]
25:  for each AE in 𝐴𝐸Classify do
26:  𝐴𝐸 = (𝐲𝑝, 𝐴𝐸(𝐲𝑝))
27:  𝐿𝑜𝑠𝑠 ← 𝐿𝑜𝑠𝑠 ∪ {𝐴𝐸}
28:  end for
29:  𝐼 = 𝐼𝑛𝑑𝑒𝑥(min (𝐿𝑜𝑠𝑠))
30: end procedure

3.3. Communication and energy efficient training

After identifying different regions within a cell, the CFL optimizes 
the parameters for each identified region/cluster using the collective 
contributions of the corresponding users. During each communication 
round, the BS selects a subset () of users from a region and provides 
region-specific model parameters to solve the following optimization 
problem [33]: 

min
𝜽𝑟

1
||

∑

𝑢∈
𝑘(𝜽𝑟;𝑢)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝜽;)

, (9)

where the vector 𝜽𝑟 collects the globally shared model parameters 
within a region and 𝑘(𝜽;𝑢) is the local objective function used in 
conjunction with the local dataset 𝑢 for the 𝑢th client. The users refine 
the parameters using their local datasets over multiple epochs with 
a batch size of 𝐵 and send the updated parameters back to the BS. 
The BS then aggregates the refined models and updates the associated 
cluster models. This iterative process continues until convergence or a 
predetermined number of communication rounds is reached.

Unlike traditional approaches [11,16], the proposed framework 
involves only a subset of users per communication round, significantly 
reducing communication load and the BS’s computational burden for 
parameter aggregation. Random user selection further conserves energy 
by preventing continuous user activity. The CFL training algorithm is 
summarized in Algorithm 2.
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Algorithm 2 Clustered Federated Learning
1: procedure Federated Learning
2:  Initialize: Global model weights 𝜽𝑟,0
3:  for each round 𝑛 = 1, 2,…  do
4:  𝑆𝑛 ← RandomSelect(𝑈𝑟, 𝑚) ⊳ Selecting 𝑚 users from 𝑈𝑟
users corresponding to the 𝑟th region

5:  for each 𝑢th user in 𝑆𝑛 do
6:  𝜽𝑟,𝑢,𝑛 ← ClientUpdate(𝑟,𝑢,𝜽𝑟,𝑛)
7:  end for
8:  𝜽𝑟,𝑛+1 ←

1
|𝑆𝑛|

∑

𝑢∈𝑆𝑛 𝜽𝑟,𝑢,𝑛
9:  end for
10: end procedure
11: procedure ClientUpdate(𝑟,𝑢,𝜽𝑟)
12:  𝑘 ← 𝐵𝑎𝑡𝑐ℎ𝑒𝑠(𝑟,𝑢, 𝐵)
13:  𝜽𝑟,𝑢 ← 𝜽𝑟
14:  for 𝑒 = 1 to  do ⊳  represents the number of epochs
15:  for each 𝑏 ∈ 𝑘 do
16:  𝜽𝑟,𝑢 ← 𝜽𝑟,𝑢 − 𝜂∇𝑟,𝑢(𝜽𝑟,𝑢; 𝑏)
17:  end for
18:  end for
19:  Share 𝜽𝑟,𝑢 with the BS
20: end procedure

3.4. Communication overhead

Communication overhead (𝑂𝐶 ) refers to data exchange during the 
training phase of the model. The communication overhead in central-
ized learning (CL) is characterized by the number of data symbols 
transmitted by the user to the BS for training the centralized model, 
comprising both input samples and their corresponding outputs. Con-
versely, the communication overhead for CFL, is defined as the total 
number of parameters transmitted by the user and received from the 
BS during the CFL training [16].

3.5. Energy overhead

Energy overhead (𝑂𝐸) refers to the number of iterations required to 
update the model parameters during training. The energy overhead in 
CL is the product of the number of batches and the number of epochs. 
Conversely, the energy overhead in FL is characterized by the product 
of the number of batches per user, the number of epochs per user, 
the number of selected users per communication round, and the total 
number of communication rounds.6

4. Simulation results

This section presents the simulation results to validate the per-
formance of our proposed algorithms. We consider a single-cell, RIS-
assisted communication system, where a BS with 𝑀 = 16 antenna 
serves 𝐾 = 15 single-antenna users using a 𝑁 = 64 element UPA 
RIS. The cell is segmented into 𝑅 = 3 regions, where each region has 
different channel characteristics and contains 𝑈𝑟 = 5 users for 𝑟 = 1, 2, 3. 
The channel matrix 𝐆 between the BS and the RIS is generated using 
Eq. (2) with 𝐿𝐺 = 3 paths between the BS and the RIS. The complex 
gains are modeled as complex Gaussian random variables with zero 
mean and unit variance, i.e. 𝛼𝐺𝑙1 ∼  (0, 1), and the phase angles are 
uniformly distributed over (−𝜋∕2, 𝜋∕2). Each element of 𝜳 𝑟,𝑢 in Eq. (8) 
is chosen from the set 

{

− 1
√

𝑄
, 1
√

𝑄

}

, considering discrete phase shifts at 

6 If all users participate in each round, FL experiences the same energy 
overhead as CL.
5 
Table 1
Autoencoder layer architecture.
 Layer type Input size Output size 
 Linear 256 512  
 Linear 512 256  
 Linear 256 128  
 Linear 128 64  
 Linear 64 32  
 Linear 32 16  
 Linear 16 32  
 Linear 32 64  
 Linear 64 128  
 Linear 128 256  
 Linear 256 512  
 Linear 512 256  

Table 2
Personalized cluster model architecture.
 Layer type Filter size Output channels 
 Convolutional Layer 1 3 × 3 32  
 Batch Normalization Layer – –  
 Convolutional Layer 2 3 × 3 16  
 Batch Normalization Layer – –  
 Convolutional Layer 3 3 × 3 8  
 Batch Normalization Layer – –  
 Fully Connected Layer – Output  

the BS and the RIS, and 𝜳 𝑟,𝑢 is assumed to be identical ∀𝑢, 𝑟. The signal-
to-noise ratio (SNR) is defined as 1∕𝜎2𝑛 , where 𝜎2𝑛 is the noise variance. 
We employ the Saleh-Valenzuela channel model for the channel 𝐟𝑟,𝑢
in Eq. (3) from RIS to the 𝑢th user in the 𝑟th region. The path count 
between the RIS and the user is 𝐿𝑟,𝑢 = 3, ∀𝑢, 𝑟. The complex channel 
gains 𝛼𝑟,𝑢𝑙2  follow the complex Gaussian distribution, i.e., 𝛼𝑟,𝑢𝑙2 ∼  (0, 1)
and phase angles are uniformly distributed over (−𝜋∕2, 𝜋∕2). The el-
evation angles are equally divided into three segments (−𝜋∕2,−𝜋∕6), 
(−𝜋∕6, 𝜋∕6), and (𝜋∕6, 𝜋∕2), with each segment corresponding to a 
specific region and channel characteristics. The operating frequency is 
28 GHz.

The required pilot overhead is set as 𝑄 = 𝑁𝑀
8 = 128 [11]. 

Each user collects a dataset of |𝑟,𝑢| = 20,000 samples, with 10% 
reserved for testing. Each user is equipped with an AE for clustering 
and classification. The received pilot signal is transformed into a real-
valued vector by concatenating its real and imaginary parts, with the 
first half containing the real part and the second half containing the 
imaginary part. The AE’s takes this as input and maps it to 512 features, 
then progressively reduces the feature size by half in each step until 
reaching 16. It then reconstructs the data by symmetrically increasing 
the feature size back to the original input dimensions. Table  1 outlines 
the AE architecture. The AE is trained using the Adam optimizer, with 
a learning rate of 𝜂 = 1×10−3 and a batch size of 𝐵 = 1024 in PyTorch.

Each personalized cluster model employs a CNN architecture with 
three 3 × 3 convolutional layers, producing 32, 16, and 8 channels, 
followed by batch normalization and ReLU activation. The output is 
then flattened and passed through a fully connected layer, transforming 
into a 2048-dimensional feature vector. The complete model includes 
approximately 2.1 million trainable parameters, as detailed in Table 
2. We analyzed five scenarios to evaluate the impact of selecting the 
optimal number of users and local training epochs per communication 
round in CFL: in scenario S1, all five users in a cluster participate, each 
running one local training epoch; in scenario S2, three out of five users 
per round are selected, each training for one epoch; in scenario S3 two 
users per round are randomly selected, each training for one epoch; 
in scenario S4, two randomly chosen users train for three epochs each; 
and in scenario S5, a single user is selected to train for five epochs. The 
ML model architecture remains unchanged across all configurations.

Fig.  3 presents the loss metrics by evaluating each user’s data 
against AE models trained on individual users. The vertical axis repre-
sents tested users, while the horizontal axis corresponds to AE models. 
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Fig. 3. Loss grid.
Fig. 4. Clustering and classification performance.
Fig. 5. Performance comparison.
The AE’s ability to regenerate similar signal structures is utilized for 
clustering, where similar loss embeddings reflect shared user char-
acteristics. As shown in Fig.  3, an AE model trained on one user’s 
data typically yields lower reconstruction loss on data that shares 
similar statistical properties. In contrast, when the AE is applied to 
data from users in different clusters (e.g., with differing environmental 
conditions), the reconstruction loss tends to be higher. Finally, the 𝐾-
means algorithm, applied to the loss metrics, identifies user clusters, 
enabling the training of a cluster-specific model for each cluster.

The within-cluster sum of squares (WCSS) is calculated to determine 
the optimal number of clusters, as shown in Fig.  4(a). Lower WCSS val-
ues indicate tighter clusters with data points closer to their centroids. 
For the classifier, we consider random selection in each cluster. Fig. 
4(b) shows the classifier’s efficiency on 30,000 test samples, maintain-
ing 97 ± 1% accuracy without additional training. This showcases the 
6 
classifier’s ability to correctly identify cluster and select the appropriate 
cluster-specific model for channel estimation.

Fig.  5(a) compares CFL with two traditional FL approaches both 
training a single global model: one based on randomly selecting three 
users from each region, and the other using all available users. Con-
versely, CFL trains region-specific models based on user clustering. 
Traditional LS and MMSE methods are also shown as benchmarks; the 
required pilot overhead for LS and MMSE is set at 𝑄 = 𝑁𝑀 = 1024. 
Apparently, the proposed approach significantly outperforms the tradi-
tional benchmarks and the conventional FL alternatives, demonstrating 
its superior performance.

Fig.  5(b) analyzes the performance of various strategies on a test 
dataset of 30,000 samples that cover the entire cell, ensuring equal con-
tributions from each cluster. Testing involves classifying input samples 
into their regions before applying specific channel estimation models. 
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Fig. 6. Comparison of communication and energy overhead.
Table 3
Secured vs. unsecured at SNR = 15 dB.
 S1 S2 S3 S4 S5  
 Secured (dB) −15.55 −15.31 −15.28 −15.43 −15.40 
 Unsecured (dB) −2.69 −1.43 −10.57 −12.86 −12.47 

Results demonstrate that selecting a smaller subset of users within 
the cluster and fewer communication rounds maintains performance 
instead of utilizing all users in traditional FL and centralized meth-
ods for channel estimation. The proposed CFl based strategy even 
slightly enhances the performance, particularly in scenario S4 at 15 dB, 
compared to the all-users scenario.

Fig.  6(a) presents a comparative analysis of various training config-
urations, focusing on communication overhead of CL, conventional FL, 
and proposed CFL approaches. It is apparent that CL is more efficient 
than conventional FL in all scenarios and surpasses the proposed CFL 
in scenarios S1, S2, and S3, while the CFL7 is preferable in scenarios 
S4 and S5. Fig.  6(b) the energy overhead during training for channel 
estimation, showing that effective user selection significantly impacts 
the overall energy consumption. Additionally, energy utilization per 
user decreases as the probability of selecting a specific user drops from 
1 to 0.2 when considering a single user. Overall, Fig.  6 validate that 
the proposed CFL-based strategy achieves strong performance while 
significantly reducing communication and computational overhead, 
highlighting its effectiveness and efficiency for scalable deployment.

Table  3 compares two CFL systems: one with authentication, en-
suring all five users are non-malicious, and another allowing all users, 
including one malicious user. The malicious user, once selected, re-
ceives the model from the BS, ignores the learning process, randomly 
reinitializes the parameters, and returns them to the BS. These actions 
disrupt training and worsen NMSE, especially in scenarios S1 and S2, 
where the adversarial user is frequently selected. Differently, in scenar-
ios S4 and S5 the chances of excluding the adversarial user increase 
and system performance improves. Generally, the system performs 
optimally when all users are authenticated and trustworthy, ensuring 
accurate channel estimation.

5. Conclusion and future work

This paper proposed a CFL-based framework enhancing commu-
nication efficiency, energy efficiency, and security. We designed an 
unsupervised clustering and classification method based on the re-
ceived pilot signals, which enhances the channel estimation accuracy 
since users within the same cluster can collaborate more efficiently. 

7 Note that our approach accounts for the overhead of sharing 5% of data 
and AE parameters for clustering and classification.
7 
We demonstrated that strategically selecting fewer users and optimizing 
the number of local epochs can significantly improve communication 
efficiency and energy efficiency. Additionally, we employed blockchain 
technology to add a layer of protection and prevent malicious users 
from compromising the model. For future work, we aim to explore 
scenarios involving user mobility and various adversarial situations.
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